Abstract

Review Article

Intrauterine Therapy with Platelet-Rich Plasma for Persistent Breeding-Induced Endometritis in Mares: A Review

Thiago Magalhães Resende*, Renata Albuquerque de Pino Maranhão, Ana Luisa Soares de Miranda, Lorenzo GTM Segabinazzi and Priscila Fantini

Published: 10 December, 2024 | Volume 8 - Issue 1 | Pages: 039-047

This review aims to emphasize the scientific focus on platelet therapies by presenting the results already obtained in mares susceptible to Persistent Breeding-Induced Endometritis (PBIE), as well as highlighting opportunities for further improvement. The recent publication demonstrating the absence of bacterial growth in susceptible mares treated with PRP underscores the potential of regenerative therapies to control infections without promoting the emergence of multidrug-resistant bacteria. Alternative therapies have gained prominence in the current public health context, with the World Health Organization listing antimicrobial resistance among the ten most significant global threats. Endometritis is the leading cause of subfertility in mares, and empirical antibiotic therapies are commonly used in the field due to market pressures related to the high financial value of embryos, along with logistical challenges in obtaining laboratory-dependent diagnostic results. Platelet-Rich Plasma (PRP) is an alternative therapy derived from whole blood plasma with a high concentration of platelets. Its anti-inflammatory, regenerative, and antimicrobial properties are particularly tested when traditional therapies fail to achieve the desired effect. In recent years, research on the use of PRP in equine reproduction has primarily focused on endometritis, with a particular emphasis on persistent breeding-induced endometritis (PBIE). However, there is a growing interest in other platelet derivatives, such as lyophilized platelet-rich plasma and platelet lysate, which offer practical field applications.

Read Full Article HTML DOI: 10.29328/journal.ivs.1001045 Cite this Article Read Full Article PDF

Keywords:

Platelet derivatives; Platelet lysate; Reproduction; Regenerative therapy; Uterus

References

  1. Troedsson MHT, Liu IM, Crabo BG;Sperm Transport and Survival In The Mare, Theriogenology. 1998;49:905-915. Available from: https://doi.org/10.1016/s0093-691x(98)00040-5
  2. Robertson SA, Chin PY, Femia JG, Brown HM. Embryotoxic cytokines—Potential roles in embryo loss and fetal programming. J Reprod Immunol. 2018;125:80–8. Available from: https://doi.org/10.1016/j.jri.2017.12.003
  3. Canisso IF, Segabinazzi LGTM, Fedorka CE. Persistent breeding-induced endometritis in mares - a multifaceted challenge: From clinical aspects to immunopathogenesis and pathobiology. Int J Mol Sci. 2020;21. Available from: https://doi.org/10.3390/ijms21041432
  4. Woodward EM, Christoffersen M, Campos J, Betancourt A, Horohov D, Scoggin KE, et al. Endometrial inflammatory markers of the early immune response in mares susceptible or resistant to persistent breeding-induced endometritis. Reproduction. 2013;145:289–296. Available from: https://doi.org/10.1530/REP-12-0452
  5. A Morris LH, McCue PM, Aurich C;Equine endometritis: a review of challenges and new approaches. 2020;160:R95–R110. Available from:https://doi.org/10.1530/rep-19-0478
  6. Carmona JU, López C, Giraldo CE;Use of autologous platelet concentrates as regenerative therapy for chronic diseases of the equine musculoskeletal system. Arch Med Vet. 2011;43:1-10. Available from: https://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0301-732X2011000100002
  7. Garbin LC, Lopez C, Carmona JU. A Critical Overview of the Use of Platelet-Rich Plasma in Equine Medicine Over the Last Decade. Front Vet Sci. 2021;8. Available from: https://doi.org/10.3389/fvets.2021.641818
  8. McCarrel TM. Equine Platelet-Rich Plasma. Veterinary Clinics of North America - Equine Practice. 2023;39(3):429-442. Available from: https://doi.org/10.1016/j.cveq.2023.06.007
  9. Metcalf ES, Scoggin K, Troedsson MHT. The effect of platelet-rich plasma on endometrial pro-inflammatory cytokines in susceptible mares following semen deposition. J Equine Vet Sci. 2012;32:498. Available from: https://doi.org/10.1016/j.jevs.2012.06.065
  10. Metcalf ES. The effect of Platelet-Rich Plasma on intraluminal fluid and pregnancy rates in mares susceptible to Persistent Mating-Induced Endometritis. J Equine Vet Sci. 2014;34:128. Available from: https://doi.org/10.1016/j.jevs.2013.10.087
  11. Segabinazzi LG, Friso AM, Correal SB, Crespilho AM, Dell’Aqua JA, Miró J, et al. Uterine clinical findings, fertility rate, leucocyte migration, and COX-2 protein levels in the endometrial tissue of susceptible mares treated with platelet-rich plasma before and after AI. Theriogenology 2017;104:120–6. Available from: https://doi.org/10.1016/j.theriogenology.2017.08.007
  12. Reghini MFS, Bussiere MCC, Neto CR, Castro-Chaves MMB, Resende HL, Fioratti E, et al. Effect of use of platelet-rich plasma on post-breeding uterine inflammatory response of mares. J Equine Vet Sci. 2014;34:127. Available from: https://doi.org/10.1016/j.jevs.2013.10.086
  13. Pasch L, Schmidt A, King W. Clinical Observations after Pre breeding Intrauterine Plasma Infusion in 18 Mares Inseminated with Thawed Frozen Semen. J Equine Vet Sci. 2021;99. https://doi.org/10.1016/j.jevs.2021.103389
  14. Segabinazzi LGTM, Canisso IF, Podico G, Cunha LL, Novello G, Rosser MF, et al. Intrauterine blood plasma platelet therapy mitigates persistent breeding-induced endometritis, reduces uterine infections, and improves embryo recovery in Mares. Antibiotics. 2021;10. Available from: https://doi.org/10.3390/antibiotics10050490
  15. Ghallab RS, El-beskawy M, El-Shereif AA, Rashad AMA, Elbehiry MA. Impact of intrauterine infusion of Platelets-Rich plasma on endometritis and reproductive performance of Arabian mare. Reproduction in Domestic Animals. 2023;58:622–9. Available from: https://doi.org/10.1111/rda.14329
  16. Walsh TR, Gales AC, Laxminarayan R, Dodd PC. Antimicrobial Resistance: Addressing a Global Threat to Humanity. PLoS Med. 2023;20. Available from: https://doi.org/10.1371/journal.pmed.1004264
  17. Heil BA, Paccamonti DL, Sones JL. Role for the mammalian female reproductive tract microbiome in pregnancy outcomes. Physiol Genomics. 2019;51:390–9. Available from: https://doi.org/10.1152/physiolgenomics.00045.2019
  18. Thomson P, Pareja J, Núñez A, Santibáñez R, Castro R. Characterization of microbial communities and predicted metabolic pathways in the uterus of healthy mares. Open Vet J. 2022;12:797–805. Available from: https://doi.org/10.5455/OVJ.2022.v12.i6.3
  19. Holyoak GR. The Equine Endometrial Microbiome: A Brief Review. Am J Biomed Sci Res. 2021;11:532–4. Available from: https://doi.org/10.34297/ajbsr.2021.11.001689
  20. Kotilainen T, Huhtinen M, Katila T. Sperm-induced Leukocytosis in the Equine Uterus. Theriogenology. 1994;41:629–636. Available from: https://doi.org/10.1016/0093-691x(94)90173-g
  21. Troedsson MHT, Loset K, Alghamdi AM, Dahms B, Crabo BG. Interaction between equine semen and the endometrium: the inflammatory response to semen. Animal Reproduction Science. 2001;68:273–278. Available from: https://doi.org/10.1016/s0378-4320(01)00164-6
  22. Papa FO, Melo CM, Monteiro GA, Papa PM, Guasti PN, Maziero RRD, et al. Equine perineal and vulvar conformation correction using a modification of Pouret’s technique. J Equine Vet Sci. 2014;34:459–64. Available from: https://doi.org/10.1016/j.jevs.2013.07.019
  23. Hemberg E, Lundeheim N, Einarsson S. Retrospective study on vulvar conformation in relation to endometrial cytology and fertility in thoroughbred mares. Journal of Veterinary Medicine Series A: Physiology Pathology Clinical Medicine. 2005;52:474–7. Available from: https://doi.org/10.1111/j.1439-0442.2005.00760.x
  24. Riddle WT, LeBlanc MM, Stromberg AJ. Relationships between uterine culture, cytology, and pregnancy rates in a Thoroughbred practice. Theriogenology. 2007;68:395–402. Available from: https://doi.org/10.1016/j.theriogenology.2007.05.050
  25. Canisso IF, Stewart J, Coutinho da Silva MA. Endometritis: Managing Persistent Post-Breeding Endometritis. Veterinary Clinics of North America - Equine Practice. 2016;32:465–80. Available from: https://doi.org/10.1016/j.cveq.2016.08.004
  26. Walter J, Neuberg KP, Failing K, Wehrend A. Cytological diagnosis of endometritis in the mare: Investigations of sampling techniques and relation to bacteriological results. Anim Reprod Sci. 2012;132:178–86. Available from: https://doi.org/10.1016/j.anireprosci.2012.05.012
  27. Frontoso R, De Carlo E, Pasolini MP, Van der Meulen K, Pagnini U, Iovane G, et al. Retrospective study of bacterial isolates and their antimicrobial susceptibilities in equine uteri during fertility problems. Res Vet Sci. 2008;84:1–6. Available from: https://doi.org/10.1016/j.rvsc.2007.02.008
  28. Petersen MR, Skive B, Christoffersen M, Lu K, Nielsen JM, et al. Activation of persistent Streptococcus equi subspecies zooepidemicus in mares with subclinical endometritis. Vet Microbiol. 2015;179:119–25. Available from: https://doi.org/10.1016/j.vetmic.2015.06.006
  29. Dascanio JJ, Schweizer C, Ley WB. Equine fungal endometritis. Equine Vet Educ. 2001;13:324–9. Available from: https://doi.org/10.1111/j.2042-3292.2001.tb00122.x
  30. Stout TAE. Fungal endometritis in the mare. Pferdeheilkunde vol. 24. 2008;1:83-87. Available from: http://dx.doi.org/10.21836/PEM20080117
  31. McKinnon AO, Squires EL, Vaala WE, Varner DD. Equine Reproduction. vol. 2. Second. 2011. Available from: http://dx.doi.org/10.1016/j.tvjl.2011.06.046
  32. Reghini MFS, Ramires Neto C, Segabinazzi LG, Castro Chaves MMB, Dell’Aqua C de PF, Bussiere MCC, et al. Inflammatory response in chronic degenerative endometritis mares treated with platelet-rich plasma. Theriogenology. 2015;86:516–22. Available from: https://doi.org/10.1016/j.theriogenology.2016.01.029
  33. Marth CD, Firestone SM, Hanlon D, Glenton LY, Browning GF, Young ND, et al. Innate immune genes in persistent mating-induced endometritis in horses. Reprod Fertil Dev. 2018;30:533–45. Available from: https://doi.org/10.1071/RD17157
  34. Nash DM, Sheldon IM, Herath S, Lane EA. Markers of the uterine innate immune response of the mare. Anim Reprod Sci. 2010;119:31–9. Available from: https://doi.org/10.1016/j.anireprosci.2009.11.008
  35. Muraille E, Goriely S. The nonspecific face of adaptive immunity. Curr Opin Immunol. 2017;48:38–43. Available from: https://doi.org/10.1016/j.coi.2017.08.002
  36. Medzhitov R, Janeway C. Immunological Reviews Innate immune recognition: mechanisms and pathways. Immunol Rev. 2000;173:89–97. Available from: https://doi.org/10.1034/j.1600-065x.2000.917309.x
  37. Janeway CA, Medzhitov R. Innate immune recognition. Annu Rev Immunol. 2002;20:197–216. Available from: https://doi.org/10.1146/annurev.immunol.20.083001.084359
  38. Yamamoto Y, Gaynor RB. IκB kinases: Key regulators of the NF-κB pathway. Trends Biochem Sci. 2004;29:72–9. Available from: https://doi.org/10.1016/j.tibs.2003.12.003
  39. Colombo I, Mislei B, Mari G, Iacono E, Merlo B. Effect of platelet lysate on uterine response of mares susceptible to persistent mating-induced endometritis. Theriogenology. 2022;179:204–10. Available from: https://doi.org/10.1016/j.theriogenology.2021.12.001
  40. Bendinelli P, Matteucci E, Dogliotti G, Corsi MM, Banfi G, Desiderio MA, et al. Molecular basis of anti-inflammatory action of platelet-rich plasma on human chondrocytes: Mechanisms of NF-κB inhibition via HGF. J Cell Physiol. 2010;225:757–66. Available from: https://doi.org/10.1002/jcp.22274
  41. Contran RS, Kumar V, Collins T, Robbins SL. Robbins Pathologic Basic of Disease. 6th ed. Philadelphia, PA, USA: 1999. Available from: https://www.scirp.org/reference/referencespapers?referenceid=1677376
  42. Do M, Sirois J. Experimental Disease Regulation of P-Selectin Expression by Inflammatory Mediators in Canine Jugular Endothelial Cells. Vet Pathol. 1996;33:662-671. Available from: https://doi.org/10.1177/030098589603300605
  43. Zerbe H, Schuberth HJ, Engelke F, Frank J, Klug E, Leibold W, et al. Development and comparison of in vivo and in vitro models for endometritis in cows and mares. Theriogenology. 2003;60:209–23. Available from: https://doi.org/10.1016/S0093-691X(02)01376-6
  44. Fumuso E. Interleukin-8 (IL-8) and 10 (IL-10) mRNA transcriptions in the endometrium of normal mares and mares susceptible to persistent post-breeding endometritis. Anim Reprod Sci. 2006;94:282–5. Available from: https://doi.org/10.1016/j.anireprosci.2006.04.006
  45. Tizard IR. The recognition of invaders. In Veterinary Immunology. vol. 1. 9th ed. St. Louis, MI, USA: Elsevier Saunders;2009.
  46. Katila T. Onset and Duration of Uterine Inflammatory Response of Mares after Insemination with Fresh Semen. Biol Reprod Mono. 1995;1:515-517. Available from: https://doi.org/10.1093/biolreprod/52.monograph_series1.515
  47. Troedsson MHT, Liu IKM, Ing M, Pascoe J. Smooth Muscle Electrical Activity in the Oviduct, and the Effect of Oxytocin, Prostaglandin F 2a, and Prostaglandin E 2 on the Myometrium and the Oviduct of the Cycling Mare 1. vol. 1. 1995. Available from: https://doi.org/10.1093/biolreprod/52.monograph_series1.475
  48. Couper KN, Blount DG, Riley EM. IL-10: The Master Regulator of Immunity to Infection. J Immunol. 2008;180 (9): 5771–5777. Available from: https://doi.org/10.4049/jimmunol.180.9.5771
  49. Arend WP. Biological role of interleukin 1 receptor antagonist isoforms. Ann Rheum Dis. 2000;59:60i–64. Available from: https://doi.org/10.1136/ard.59.suppl_1.i60
  50. Freeman DA, Weber JA, Geary RT, Woods GL. Time of Embryo Transport Through The Mare Oviduct. Theriogenology. 1991;36:823-830. Available from: https://doi.org/10.1016/0093-691x(91)90348-h
  51. Woodward EM, Christoffersen M, Campos J, Squires EL, Troedsson MHT. Susceptibility to persistent breeding-induced endometritis in the mare: Relationship to endometrial biopsy score and age, and variations between seasons. Theriogenology. 2012;78:495–501. Available from: https://doi.org/10.1016/j.theriogenology.2012.02.028
  52. Palm F, Walter I, Budik S, Kolodziejek J, Nowotny N, Aurich C. Influence of different semen extenders and seminal plasma on PMN migration and on the expression of IL-1β, IL-6, TNF-α, and COX-2 mRNA in the equine endometrium. Theriogenology. 2008;70:843–51. Available from: https://doi.org/10.1016/j.theriogenology.2008.04.054
  53. Fumuso EA, Aguilar J, Giguère S, Rivulgo M, Wade J, Rogan D. Immune parameters in mares resistant and susceptible to persistent post-breeding endometritis: Effects of immunomodulation. Vet Immunol Immunopathol. 2007;118:30–9. Available from: https://doi.org/10.1016/j.vetimm.2007.04.009
  54. Marth CD, Young ND, Glenton LY, Noden DM, Browning GF, Krekeler N. Deep sequencing of the uterine immune response to bacteria during the equine oestrous cycle. BMC Genomics. 2015;16:394. Available from: https://doi.org/10.1186/s12864-015-2139-3
  55. Troedsson MH, Liu IK. Uterine clearance of non-antigenic markers (51Cr) in response to a bacterial challenge in mares potentially susceptible and resistant to chronic uterine infections. J Reprod Fertil Suppl. 1991;44:283–8. Available from: https://pubmed.ncbi.nlm.nih.gov/1795272/
  56. Zent WW, Troedsson MH, Xue J-L. Postbreeding Uterine Fluid Accumulation in a Normal Population of Thoroughbred Mares: A Field Study. AAEP Proceedings. 1998;44:64-65. Available from: https://www.ivis.org/sites/default/files/library/aaep/1998/Zent.pdf
  57. Troedsson MHT, Liu IKM, Ing M, Pascoe J, Thurmond M. Multiple site electromyography recordings of uterine activity following an intrauterine bacterial challenge in mares susceptible and resistant to chronic uterine infection. Journal of Reproduction and Fertility. 1993;99:307-313. Available from: https://doi.org/10.1530/jrf.0.0990307
  58. Alghamdi AS. Nitric Oxide Levels and Nitric Oxide Synthase Expression in Uterine Samples from Mares Susceptible and Resistant to Persistent Breeding-induced Endometritis. A J R J. 2005;53:230-237. Available from: https://doi.org/10.1111/j.1600-0897.2005.00270.x
  59. Scoggin CF. Endometritis: Nontraditional Therapies. Veterinary Clinics of North America - Equine Practice. 2016;32:499–511. Available from: https://doi.org/10.1016/j.cveq.2016.08.002
  60. Álvarez M, López C, Giraldo C, Samudio I, Carmona J. In vitro bactericidal activity of equine platelet concentrates, platelet-poor plasma, and plasma against methicillin-resistant Staphylococcus aureus. Arch Med Vet. 2011;43:155-161. Available from: https://www.scielo.cl/scielo.php?pid=S0301-732X2011000200008&script=sci_abstract&tlng=en
  61. Soares CS, Babo PS, Reis RL, Carvalho PP, Gomes ME. Platelet-Derived Products in Veterinary Medicine: A New Trend or an Effective Therapy? Trends Biotechnol. 2021;39:225–43. Available from: https://doi.org/10.1016/j.tibtech.2020.07.011
  62. Boswell SG, Cole BJ, Sundman EA, Karas V, Fortier LA. Platelet-rich plasma: A milieu of bioactive factors. Arthroscopy - Journal of Arthroscopic and Related Surgery 2012;28:429–39. Available from: https://doi.org/10.1016/j.arthro.2011.10.018
  63. Malaluang P, Wilén E, Lindahl J, Hansson I, Morrell JM. Antimicrobial resistance in equine reproduction. Animals 2021;11. Available from: https://doi.org/10.3390/ani11113035
  64. Pavlovic V, Ciric M, Jovanovic V, Stojanovic P. Platelet Rich Plasma: A short overview of certain bioactive components. Open Medicine. 2016;11:242–7. Available from: https://doi.org/10.1515/med-2016-0048
  65. Bos-Mikich A, Ferreira MO, de Oliveira R, Frantz N. Platelet-rich plasma or blood-derived products to improve endometrial receptivity? J Assist Reprod Genet. 2019;36:613–20. Available from: https://doi.org/10.1007/s10815-018-1386-z
  66. Gremmel T, Frelinger AL, Michelson AD. Platelet physiology. Semin Thromb Hemost. 2016;42:191–204. Available from: https://doi.org/10.1055/s-0035-1564835
  67. Paes Leme FO, Wurzinger LJ, Vasconcelos AC, Alves GES. Platelets activation in equine with induced laminitis and treated with ketoprophen, phenylbutazone and flunixin meglumin. Arq Bras Med Vet Zootec. 2006;58:149–57. Available from: https://www.scielo.br/j/abmvz/a/z3LLtqVQNsPwyGKyDZbrSJk/
  68. Pelagalli A, Belisario MA, Tafuri S, Lombardi P, D’angelo D, Avallone L, et al. Adhesive Properties of Platelets from Different Animal Species. J Comp Path. 2003;128:127–31. Available from: https://doi.org/10.1053/jcpa.2002.0615
  69. Van Buul GM, Koevoet WLM, Kops N, Bos PK, Verhaar JAN, Weinans H, et al. Platelet-rich plasma releasate inhibits inflammatory processes in osteoarthritic chondrocytes. American Journal of Sports Medicine. 2011;39:2362–70. Available from: https://doi.org/10.1177/0363546511419278
  70. Li T, Ma Y, Wang M, Wang T, Wei J, Ren R, He M, et al. Platelet-rich plasma plays an antibacterial, anti-inflammatory, and cell proliferation-promoting role in an in vitro model for diabetic infected wounds. Infect Drug Resist. 2019;12:297–309. Available from: https://doi.org/10.2147/IDR.S186651
  71. Xu Y, Yu H, Sun H. Targeting the host hemostatic system function in bacterial infection for antimicrobial therapies. J Thromb Thrombolysis. 2014;37:66–73. Available from: https://doi.org/10.1007/s11239-013-09949
  72. Palankar R, Kohler TP, Krauel K, Wesche J, Hammerschmidt S, Greinacher A. Platelets kill bacteria by bridging innate and adaptive immunity via platelet factor 4 and FcγRIIA. Journal of Thrombosis and Haemostasis. 2018;16:1187–97. Available from: https://doi.org/10.1111/jth.13955
  73. Aktan Í, Dunkel B, Cunningham FM. Equine platelets inhibit E. coli growth and can be activated by bacterial lipopolysaccharide and lipoteichoic acid although superoxide anion production does not occur and platelet activation is not associated with enhanced production by neutrophils. Vet Immunol Immunopathol. 2013;152:209–17. Available from: https://doi.org/10.1016/j.vetimm.2012.12.007
  74. Everts PAM, Hoffmann J, Weibrich G, Mahoney CB, Schönberger JPAM, Zundert AV, et al. Differences in platelet growth factor release and leucocyte kinetics during autologous platelet gel formation. Transfusion Medicine. 2006;16:363–8. Available from: https://doi.org/10.1111/j.1365-3148.2006.00708.x
  75. Yeaman MR. Platelets: At the nexus of antimicrobial defense. Nat Rev Microbiol. 2014;12:426–37. Available from: https://doi.org/10.1038/nrmicro3269
  76. Sethi D, Martin KE, Shrotriya S, Brown BL. Systematic literature review evaluating evidence and mechanisms of action for platelet-rich plasma as an antibacterial agent. J Cardiothorac Surg. 2021;16. Available from: https://doi.org/10.1186/s13019-021-01652-2
  77. Christoffersen M, Woodward EM, Bojesen AM, Petersen MR, Squires EL, Lehn-Jensen H, et al. Effect of immunomodulatory therapy on the endometrial inflammatory response to induced infectious endometritis in susceptible mares. Theriogenology. 2012;78:991–1004. Available from: https://doi.org/10.1016/j.theriogenology.2012.04.016
  78. Bielecki T, Dohan Ehrenfest DM, Everts PA, Wiczkowski A. The Role of Leukocytes from L-PRP/L-PRF in Wound Healing and Immune Defense: New Perspectives. Current Pharmaceutical Biotechnology. 2012;13:1153-1162. Available from: https://doi.org/10.2174/138920112800624373
  79. Mariani E, Canella V, Berlingeri A, Bielli A, Cattini L, Landini MP, et al. Leukocyte presence does not increase microbicidal activity of Platelet-rich Plasma in vitro Clinical microbiology and vaccines. BMC Microbiol 2015;15. Available from: https://doi.org/10.1186/s12866-015-0482-9
  80. Del Prete C, Montano C, Cocchia N, de Chiara M, Gasparrini B, Pasolini MP. Use of regenerative medicine in the treatment of endometritis in mares: A systematic review and meta-analysis. Theriogenology. 2024;227:9–20. Available from: https://doi.org/10.1016/j.theriogenology.2024.07.006
  81. Różalski MI, Micota B, Sadowska B, Paszkiewicz M, Więckowska-Szakiel M, et al. Antimicrobial/anti-biofilm activity of expired blood platelets and their released products. Postepy Hig Med Dosw. 2013;67:321–5. Available from: https://doi.org/10.5604/17322693.1046009
  82. Segabinazzi LGTM, Canisso IF. How to Prepare Platelet-Rich Plasma for Use in Reproductive Practices with Mares. AAEP Proceedings. 2021;67. Available from: https://cabidigitallibrary.org/doi/pdf/10.5555/20220126840
  83. Textor JA, Willits NH, Tablin F. Synovial fluid growth factor and cytokine concentrations after intra-articular injection of a platelet-rich product in horses. Veterinary Journal. 2013;198:217–23. Available from: https://doi.org/10.1016/j.tvjl.2013.07.020
  84. Rinnovati R, Romagnoli N, Gentilini F, Lambertini C, Spadari A. The influence of environmental variables on platelet concentration in horse platelet-rich plasma. Acta Vet Scand. 2016;58. Available from: https://doi.org/10.1186/s13028-016-0226-3
  85. Giraldo CE, López C, Álvarez ME, Samudio IJ, Prades M, Carmona JU. Effects of the breed, sex, and age on cellular content and growth factor release from equine pure-platelet-rich plasma and pure-platelet-rich gel. BMC Vet Res. 2013;9. Available from: https://doi.org/10.1186/1746-6148-9-29
  86. Fantini P, Jiménez R, Vilés K, Iborra A, Palhares MS, Catalán J, et al. Simple tube centrifugation method for platelet-rich plasma preparation in Catalonian donkeys as a treatment of endometritis-endometrosis. Animals. 2021;11. Available from: https://doi.org/10.3390/ani11102918
  87. Gordon J, Álvarez-Narváez S, Peroni JF. Antimicrobial Effects of Equine Platelet Lysate. Front Vet Sci 2021;8. Available from: https://doi.org/10.3389/fvets.2021.703414
  88. Sumner SM, Naskou MC, Thoresen M, Copland I, Peroni JF. Platelet lysate obtained via plateletpheresis performed in standing and awake equine donors. Transfusion. 2017;57:1755–62. Available from: https://doi.org/10.1111/trf.14124
  89. Garbin LC, Contino EK, Olver CS, Frisbie DD. A safety evaluation of allogeneic freeze-dried platelet-rich plasma or conditioned serum compared to autologous frozen products equivalents in equine healthy joints. BMC Vet Res 2022;18. Available from: https://doi.org/10.1186/s12917-022-03225-4
  90. McClain AK, McCarrel TM. The effect of four different freezing conditions and time in frozen storage on the concentration of commonly measured growth factors and enzymes in equine platelet-rich plasma over six months. BMC Vet Res. 2019;15. Available from: https://doi.org/10.1186/s12917-019-2040-4
  91. Andia I, Perez‐valle A, Amo CD, Maffulli N. Freeze‐drying of platelet‐rich plasma: The quest for standardization. Int J Mol Sci. 2020;21:1–20. Available from: https://doi.org/10.3390/ijms21186904
  92. Osorio CF, Campos L, Guerra J, Carneiro H, Abreu L, Orozco AO, et al. Comparative characterization between autologous serum and platelet lysate under different temperatures and storage times. Insights in Veterinary Science. 2023;7. Available from: https://doi.org/10.29328/journal.ivs.1001038
  93. Novello G, Souza F, Canisso IF. Platelet-Rich Plasma Proteome of Mares Susceptible to Persistent-Breeding-Induced Endometritis Differs from Resistant Mares. Animals. 2024;14. Available from: https://doi.org/10.3390/ani14142100
  94. Borş SI, Dascălu DL, Borş A, Fahmy HM, Kandil OM, Abdoon ASS. Intraovarian Injection of Reconstituted Lyophilized Growth-Promoting Factor Extracted from Horse Blood Platelets Increases Oocytes Recovery and In Vitro Embryo Production in Holstein Cows. Animals. 2022;12. Available from: https://doi.org/10.3390/ani12192618
  95. Dawod A, Miro J, Elbaz HT, Fahmy H, Abdoon AS. Effect of intrauterine infusion of equine fresh platelet-rich plasma or lyophilized PRP on ovarian activity and pregnancy rate in repeat breeder purebred Arabian mares. Animals. 2021;11. Available from: https://doi.org/10.3390/ani11041123
  96. Sum R, Hager S, Pietramaggiori G, Orgill DP, Dee J, Rudolph A, et al. Wound-healing properties of trehalose-stabilized freeze-dried outdated platelets. Transfusion. 2007;47:672–9. Available from: https://doi.org/10.1111/j.1537-2995.2007.01170.x
  97. Pietramaggiori G, Kaipainen A, Czeczuga JM, Wagner CT, Orgill DP. Freeze-dried platelet-rich plasma shows beneficial healing properties in chronic wounds. Wound Repair and Regeneration. 2006;14:573–80. Available from: https://doi.org/10.1111/j.1743-6109.2006.00164.x
  98. Silva LQ, Huber SC, Montalvão SADL, Bassora FDS, De Paula EV, Annichino-Bizzacchi J. Platelet Activation Is Not Crucial for Platelet-Rich Plasma (PRP), When Used As Autologous Therapeutic Product, and Could be Lyophilized without Any Growth Factor Loss. Blood. 2016;128:2639–2639. Available from: https://doi.org/10.1182/blood.v128.22.2639.2639
  99. Perrone G, Lastra Y, González C, Caggiano N, Giménez R, Pareja R, et al. Treatment With Platelet Lysate Inhibits Proteases of Synovial Fluid in Equines With Osteoarthritis. J Equine Vet Sci. 2020;88. Available from: https://doi.org/10.1016/j.jevs.2020.102952
  100. Tyrnenopoulou P, Diakakis N, Karayannopoulou M, Savvas I, Koliakos G. Evaluation of intra-articular injection of autologous platelet lysate in horses with osteoarthritis of the distal interphalangeal joint. Veterinary Quarterly. 2016;36:56–62. Available from: https://doi.org/10.1080/01652176.2016.1141257
  101. Gilbertie JM, Long JM, Schubert AG, Berglund AK, Schaer TP, Schnabel LV. Pooled platelet-rich plasma lysate therapy increases synoviocyte proliferation and hyaluronic acid production while protecting chondrocytes from synoviocyte-derived inflammatory mediators. Front Vet Sci. 2018;5. Available from: https://doi.org/10.3389/fvets.2018.00150
  102. Hauschild G, Geburek F, Gosheger G, Eveslage M, Serrano D, Streitbürger A, et al. Short-term storage stability at room temperature of two different platelet-rich plasma preparations from equine donors and potential impact on growth factor concentrations. BMC Vet Res. 2017;13. Available from: https://doi.org/10.1186/s12917-016-0920-4
  103. Schallmoser K, Henschler R, Gabriel C, Koh MBC, Burnouf T. Production and Quality Requirements of Human Platelet Lysate: A Position Statement from the Working Party on Cellular Therapies of the International Society of Blood Transfusion. Trends Biotechnol. 2020;38:13–23. Available from: https://doi.org/10.1016/j.tibtech.2019.06.002
  104. Roffi A, Filardo G, Assirelli E, Cavallo C, Cenacchi A, Facchini A, et al. Does platelet-rich plasma freeze-thawing influence growth factor release and their effects on chondrocytes and synoviocytes? Biomed Res Int. 2014. Available from: https://doi.org/10.1155/2014/692913

Figures:

Similar Articles

Recently Viewed

  • Synthesis of Carbon Nano Fiber from Organic Waste and Activation of its Surface Area
    Himanshu Narayan*, Brijesh Gaud, Amrita Singh and Sandesh Jaybhaye Himanshu Narayan*,Brijesh Gaud,Amrita Singh,Sandesh Jaybhaye. Synthesis of Carbon Nano Fiber from Organic Waste and Activation of its Surface Area. Int J Phys Res Appl. 2019: doi: 10.29328/journal.ijpra.1001017; 2: 056-059
  • Obesity Surgery in Spain
    Aniceto Baltasar* Aniceto Baltasar*. Obesity Surgery in Spain. New Insights Obes Gene Beyond. 2020: doi: 10.29328/journal.niogb.1001013; 4: 013-021
  • Tamsulosin and Dementia in old age: Is there any relationship?
    Irami Araújo-Filho*, Rebecca Renata Lapenda do Monte, Karina de Andrade Vidal Costa and Amália Cinthia Meneses Rêgo Irami Araújo-Filho*,Rebecca Renata Lapenda do Monte,Karina de Andrade Vidal Costa,Amália Cinthia Meneses Rêgo. Tamsulosin and Dementia in old age: Is there any relationship?. J Neurosci Neurol Disord. 2019: doi: 10.29328/journal.jnnd.1001025; 3: 145-147
  • Case Report: Intussusception in an Infant with Respiratory Syncytial Virus (RSV) Infection and Post-Operative Wound Dehiscence
    Lamin Makalo*, Orlianys Ruiz Perez, Benjamin Martin, Cherno S Jallow, Momodou Lamin Jobarteh, Alagie Baldeh, Abdul Malik Fye, Fatoumatta Jitteh and Isatou Bah Lamin Makalo*,Orlianys Ruiz Perez,Benjamin Martin,Cherno S Jallow,Momodou Lamin Jobarteh,Alagie Baldeh,Abdul Malik Fye,Fatoumatta Jitteh,Isatou Bah. Case Report: Intussusception in an Infant with Respiratory Syncytial Virus (RSV) Infection and Post-Operative Wound Dehiscence. J Community Med Health Solut. 2025: doi: 10.29328/journal.jcmhs.1001051; 6: 001-004
  • The prevalence and risk factors of chronic kidney disease among type 2 diabetes mellitus follow-up patients at Debre Berhan Referral Hospital, Central Ethiopia
    Getaneh Baye Mulu, Worku Misganew Kebede, Fetene Nigussie Tarekegn, Abayneh Shewangzaw Engida, Migbaru Endawoke Tiruye, Mulat Mossie Menalu, Yalew Mossie, Wubshet Teshome and Bantalem Tilaye Atinafu* Getaneh Baye Mulu,Worku Misganew Kebede,Fetene Nigussie Tarekegn,Abayneh Shewangzaw Engida,Migbaru Endawoke Tiruye,Mulat Mossie Menalu,Yalew Mossie,Wubshet Teshome,Bantalem Tilaye Atinafu*. The prevalence and risk factors of chronic kidney disease among type 2 diabetes mellitus follow-up patients at Debre Berhan Referral Hospital, Central Ethiopia. J Clini Nephrol. 2023: doi: 10.29328/journal.jcn.1001104; 7: 025-031

Read More

Most Viewed

Read More

Help ?